Scalingto Thousand®f Processorwith
BufferedCoscheduling

FabrizioPetrini

CCS-3Modeling,Algorithms, & Informatics
Computer& ComputationaBcience®Division
Los AlamosNationalLaboratory
fabrizi o@ anl . gov
http://mwww.c3.lanl.gov/~fabrizio

Abstract

In this paperwe describeBuffered Coschedulinga nev approachto design
the systemsoftware of large scaleparallel computers. A buffered coscheduled
systemcantolerateinefficient programs programsthat have communicatiorand
loadimbalanceandcansubstantiallyincreaseheresourcauitilization, by overlap-
ping computationcommunicatiorandl/O over several jobs. In additionto that,
Buffered Coschedulingcreatesa framawork to easilyimplementfault-tolerance,
armguablythe mostimportantproblemto solve to build usable large scaleparallel
computers.

1 Threelmportant Dimensionsin Parallel Computing

Clustersof workstationare becomingwidespreadthanksto the availability of com-
modity componentshatcanbeintegratedin a singlemachine.For example,by using
bladeseners,it is now possibleo stackseveralhundred®of processore asinglerack.
It is easyto predictthatin thenearfuturelargescaleclusterswith thousandsf proces-
sors,will move out of the boundarieof theresearchabsandwill find their way into
commercialcomputing.In orderto have a critic view of the currentstateof theartin

parallelcomputingwe will organizeour discussioralongthreeimportantdimensions
(seeFigurel).

e ProgrammingandPerformance
e ResourcdJtilization and

e Fault-Tolerance.

*The work was supportedy the U.S. Departmenbf Enegy throughLos AlamosNational Laboratory
contractW-7405-ENG-36

PROGRAMMING

/

Figurel: Threeimportantdimensionsn parallelcomputing

1.1 Programming and Performance

Whenwe talk abouta parallelcomputerapplicationperformanceés probablythemain
concern.In fact,thetraditionalgoal of a parallelcomputeiis to solve a givenproblem
in aslittle time aspossible.But experiencehasshavn that extractingthe full perfor
mancefrom a parallelcomputeris notaneasytask.

Most parallelprogramsarecodedusingMPl. Whenwriting a programin MPI, the
usermustpay attentionto a large numberof details. It mustdivide the input dataset
in a numberof distinctdomains,maptheselogical domainsonto a setof processes,
defineaninter-procescommunicatiorscheduletypically basedon pairsof matching
sendsandreceves,setsynchronizatiorpoints,etc. This procesds tediousanderror
prone,andit is usuallydifficult to dehug a parallelprogramandprove its correctness.
Obtaininggood performancdrom a working MPI programcanalsobe a challenging
task.A loadimbalancan asingleprocessanslow down the whole parallelprogram.
Thecommunicatiorschedulés alsocritical to achieze goodperformanceMarny paral-
lel programshave a self-synchronizindehaior, often calledbulk-synchronousanda
slightload or communicationimbalancecanseverelyimpactthe runtime of thewhole
program. Simply put, parallelprogramsare “unstable”from a performancepoint of
view, andminor problemscanhave a severeimpacton the overall performance.

MPI is a greatescommondenominatothat guaranteeportability acrossa wide
rangeof parallelarchitecturesBut, in generalthereis little guaranteghatthe same
level of performancef aprogramtunedfor aparticulararchitecturavill bemaintained
when moving to anotherarchitecture.In sequentiacomputing,we take for granted
thatanexisting programwill take advantagealmostautomaticallyof technologicalm-
provementgfastemprocessoranemory I/O busetc),by simply recompilingthesource
code. This still doesnt happenwith parallelcomputers.For this reason]argeinvest-
mentsfor developingparallelsoftwarearestill limited, andin mostcasesonfinedto
the nationallabs and a few companies.Developing parallel codeis clearly a major
obstacleto thewidespreadiseof parallelcomputersThetypical costof a ASCl-class
physicalsimulationcodeis in the orderof tensof millions of dollarsandit is probably

asexpensve asthe hardwareon which it runs. But thesecodeshave alife expectany
of severaldecadeswhile the hardwarebecome®utdatedn justafew years.

The developmenof scalablecommunicatioribrariesandsystemsoftwareis also
very time consuming. For example,the experiencewith the largestASCI machines
asBlue Mountainandthe 30T machineat Los Alamos,or ASCI White at Livermore,
shavsthatit takesafew yearsto eliminateall the bugs(typically raceconditions)and
scalability bottlenecks. It may soundodd, but usually thesemachinesbecomefully
functionalshortly beforethey arephasedut. Thisis influencedby the compleity of
communicatioribrariesasMPI, which have morethan200function calls,andby the
inherentnon-determinisnof the communicationayer.

1.2 Resource Management

Mostlargescalecomputersllocatetheresourcesn spacesharing.For example when
we launcha paralleljob, theresourceananagemergystemin useon the machineallo-
catesa subsebf processors/processimpdes all theirmemory network andl/O sub-
systemsThis winnertake-all approacthasseverallimitations. Somein-depthstudies
andcharacterizationsf large scaleASCI codesshaw thattheseprogramshave a pro-
nouncedbulk-synchronousehaior. All the processesomputethe cellsin a given
domainall togetherfor a few milliseconds. Thenthey all stop and performand ex-
changeof data,typically accordinga well-definedcommunicatiorstencilwith a setof
logical neighborsagainfor afew milliseconds Lessfrequently they performl/O. The
typical I/O patternsarecheckpointingroughly 80% of I/O traffic) anddatacollection
(theremaining20%), in orderto analyzethe progresf the computation.In all these
phasespnly onetype of resources used. For example,whenthe job is computing,
bothnetwork andl/O areidle, whenit is communicatingall processorandl/O arenot
in use,andwhenit is doing|l/O only asmallfractionof the network is used.

If we give acritical look to how resourcesreallocatedin a parallelcomputerwe
canfind astrongresemblancbetweerthe stateof theartandthe operatingsystemgor
PCsof the early eighties,asMicrosoft DOS. In suchsystemsthe userwasableto run
asingleprogramat atime. Any PC user would nowadaysfind unacceptabléo run a
singleprogramat atime (for examplereadinge-mail,usinga web browser, accessing
the file system,etc) andwe take for grantedthat the operatingsystemcan multitask
several actiities at the sametime. We can print a file, andwhile doing that, we can
continueusingthe availableresourcedor executingothertasks.Unfortunately this is
notyetpossiblein a parallelcomputer

Resourcemanagerdiave alsomary scalability limitations. The typical resource
manageis structuredasa collectionof deamonseachonerunningon a distinctnode,
thatcommunicatevith slow, point-to-pointTCP/IPconnectionsThe existing produc-
tion systemsshaw thatthis designis inherentlynot scalabledueto boththe overhead
of thecommunicatioribrary andto the algorithmicdesignof the communicatiorpat-
ternsthatdistribute andgathercontrolmessageanddata.

1.3 Fault-Tolerance

Thelast,but probablymostimportantdimensionis thefault-toleranceAn ASCI-class
machineasthe 30T, will have morethan12000processoranorethan6000network in-
terfacestensof thousandsf cables A preliminaryanalyticalevaluationof the MTBF

shaws that the machinewill be up, on the average,only a few hours. The probabil-
ity thata 4096 processojjob, runningfor 5 hourswill successfulljcompleteis less
than50%. A commonapproacho alleviate this problemis to partition the machine
in smallersggments,and usethesesggmentsasindependenmachines. Inside each
segment,theapplicationgun a userlevel checkpointingalgorithmat regularintervals.

Thecheckpoinis implementedvith arathersimplealgorithm:thewholeapplicationis

halted,andeachprocesslumpinto thefile systentherelevantstateof thecomputation.
Thecheckpointl/O traffic is roughly estimatechs80% of thewhole /O traffic.

An alternatve approachis to checkpointthe statusof a job while it is running,
in anincrementalandtransparentvay. Unfortunately the stateof the artin dynamic
checkpointings still in its infang/. The main algorithmic challengebehinddynamic
checkpointingis to identify a consistenglobal state,to which the job canrollback,
shoulda fault occur Theidentificationof suchglobal stateis not trivial, becausehe
algorithmsmusttake into accountmary details,suchasthe messages transitand
the interactionwith the file system,and becausehesealgorithmscan only rely on
limited, local information on the global state. If the distributed algorithmsare not
carefullydesignedtheonly valid globalstatecanbetheinitial oneatlaunchtime, thus
generatinghesocalled“domino effect”. Thestateof theartin dynamiccheckpointing
is Egida,a transparentiow-overheadernvironmentthatincrementallycheckpointshe
statusof anMPI job atruntime, developpedat UT Austin. Theinitial resultsshav the
scalabilityof this approachis limited to afew nodesandit is not clearwhetherit will
bepossibleto scaleto alargenumberof nodesusingonly localinformation,in thenext
few years.

2 A caseStudy: 3-D Simulation of a Nuclear Weapon

Scientistsaat Los AlamosandLivermorenationallaboratoriehave recentlycompleted
two of the largestcomputersimulationsever attempted,the first full-systemthree-
dimensionakimulationof a nuclearweapon. The Los Alamossimulationusedmore
than480 million cellson 1,9200f the 8,192processor®n the ASCI White machine
at Livermore.Theactualprocessindime was2,931wall-clock hoursor 122.5days—

morethan6.6 million CPU hours. The Livermoresimulationran on morethan1024
processorsf the samemachineandtook 39 daysto execute.

An in-depth performancesvaluationof Sage[4], a sanitizedversionof the Los
Alamossimulationwhich maintainsthe samepropertiesof the original code(compu-
tationalgranularity communicatiorpattern datasetetc), shavs that,whenwe run this
applicationon a large numberof processarno more than 50% of the time is spent
computingandthe remainingtime is spentcommunicating.Whatis moreimportant,
this applicationdisplaya bulk-synchronoudbehavior, thatstrictly alternategshesetwo
phasesSo,whenthe processorarecomputingthereis nocommunicationn the back-
groundandvice versa.Thisbehavior is morepronouncedvhenwe usealargernumber
of processors.

In additionto that,about5 minutesevery hourarespentdoing a userlevel check-
point. It is interestingto notethattheseapplicationswvould requireall the processors,
all the memoryandall the time, if possible. But thereis a practicallimit to the re-
sourceghat canbe effectively allocated.In factin alarge configurationthe expected

Ihttp://iwwwlanl.gav/orgs/pa/mwskulletin/2002/03/08/text01.shtml

MTBF is only few hours,so a checkpointshouldtake placevery frequently up to a
pointwherevery little usefulwork getsdone.Thefrequeng of the checkpointis em-
pirically determinedy consideringhe percevednumberof faultsperunit of time and
theoverheado performthe checkpointtself.

We canthusdraw two importantconsiderations.

1. Dueto the lack of fault-tolerancelarge scalemachinesannotbe fully usedas
capabilityengines.

2. If wesumtheidlestimesdueto communicatiorandcheckpointwe canseethat
we have the resourcesiecessaryo implementanother(virtual) supercomputer
usingthe samehardware,which hasthe samecomputatiorcapability

3 Buffered Coscheduling

Buffered Co-SchedulingBCS) is a new methodologythat cansubstantiallyincrease
resourceutilization, simplify the developmeniof parallelcodeby toleratinginefficient
programsandenhancdault-tolerancen alarge scaleparallelcomputer1].

BCS multitasksparallel jobs. Thatis, insteadof overlappingcomputationwith
communicatiorand1/O within a single parallel program, all the communicatiorand
I/0 which arisesfrom a set of parallel programs canbe overlappedwith the compu-
tationsin thoseprograms.We proposea new approactbasedon strobingheartbeats
atregularintervals, or time-slices to tightly synchronizethe processorsindto sched-
ule thecommunicatiorandthe computation.To implementthis multitasking,buffered
coschedulingelies on two techniques.First, the communicationgeneratedy each
processds bufferedand performedat the end of regularintervals (or time-slices).By
delayingcommunicationwe allow for the global schedulingof the communication
pattern. Seconda strobingmechanisnperformsan exchangeof controlinformation
attheendof eachtime-slice.The goalis to move away from isolatedschedulingalgo-
rithms(whereprocessormake decisiondasedsolelyontheirlocal statusandalimited
view of theremotestatus)o moreoutward-lookingor globalschedulingalgorithms.

3.1 Communication Buffering

In BCS every communicatiorprimitive is implementedy filling in a descriptorwith
all theimportantinformation. For example,whenexecutinga pointto point send,the
descriptorcontainsinformationon the sourceand destinationprocesses;ommunica-
tion buffers,tag matchingetc. If the communicatiorprimitiveis blocking,the process
is suspendecnd will be waken up whenall the communicationprotocol hasbeen
successfullycompletedfor exampleby alocal scheduleor by the OS, dependingon
thetype of implementation.Whenexecutinga non blocking primitive, the processs
not interrupted. In both blocking and non-blockingcase,the actualcommunication
protocolis not eagerlyperformed,as donein virtually all existing implementations
of communicationlibraries. The goalis to collect as muchinformation as possible
on the global stateof the machine beforesendinga message Also, by delayingthe
communicationwe greatlysimplify theimplementatiorof the fault-toleranceandthe

communicatioribrary itself, as explainedbelon. Dependingon the type of imple-
mentationthe actualcommunicatiorprotocolcanberun by adaemorprocessbhy the
kernelor, moreaggressiely, by a network interface,usingalow-overheadorotocol.

3.2 Strobing

At the core of BCS thereis the strobing algorithm, which tries to strictly schedule
all the actiities in a parallel machineat regular intenvals, called time-slices. Some
importantstepsof this algorithmarelisted below.

1. Distribution of the startstrobesignal: this control messages distributedto all
processingnodes possiblywith little skew. Strobesignalsaredeliveredat every
time-slice.Dependingon the architecturabupportavailable,the startstrobecan
be deliveredusinga dedicatechetwork, asthe control network availablein the
ConnectionMachineCM-5 [5], throughsomehardware multicastcapability of
the datanetwork, if available,of emulatedwith atree-basedoftwaremulticast.

2. Distribution of controlinformation: afterthe delivery of the startstrobe,all the
nodedistributetherelevantcontrolinformation,for examplethecommunication
buffers,in orderto scheduleall thecommunication.

3. Performthe actualschedulingof the communication.The main goal is to send
in eachtime-sliceonly the messageshat can be actually be deliveredby the
network andsent/receiedby the processingiodesin the currenttime-slice.For
exampleif a processingnodecandeliver 3 MB/sec,duringatime-sliceof length
A sec,it will only be ableto send/receie SA MB of data,in the optimal case.
Sothereis no advantagein trying to overcomethis limit. Also, the scheduling
algorithmcandelaythetransmissiorof messagewhosedestinatiorbuffersare
pagedout, thusavoiding expensve re-transmissions.

A A A

COMPUTATION

I |
1 2 6 7
=

COMMUNICATION COMMUNICATION
COMMUNICATION SCHEDULING SCHEDULING

L 1 [] [] [
?i/ 4 5 <

Figure2: StrobingAlgorithm

Someintuition on the strobingalgorithmis providedin Figure2. The Figurede-
scribesa possibleexecutionscenarioon a specificprocessar The processoexecutes
a processwhich issueswo non-blockingcalls (Figure 2 step1 and?2) within thefirst
time-sliceA. Thecallsfill in two communicatiordescriptorsaandthe processcontin-
uesits computation After thearrival of the startstrobe(step3), we try to schedulehe

communicatiorby matchingthe pendingdescriptors.For example,we try to resole

ary pairsof matchingsendsandreceves.At this pointwe schedulghe subsebf com-

municationghatcanbe actuallydeliveredin the currenttime-slice. We try to overlap
thosecommunicationsith the ongoingcomputation. In the presenceof a blocking

call (step6), the calling processs suspendedndanothemprocesselongingto another
jobthatis readyto runis schedule@ntheprocessarlt is worth notingthatthestrobing
time-sliceis differentfrom the job schedulingime-slicewhich, in the generakase,s

anintegermultiple of the strobingone.

3.3 Toleranceto Inefficient Programs

BCSis ableto toleratetwo typesof inefficienciesin the userapplications:

1. transienfoadimbalanceand

2. highcommunicatioroverhead.

Thetraditionalapproachn parallelprogramdevelopmentjs to reduceloadimbalance
within the singleprogram.This canbe very time consumingijn particularwith those
applicationsasAdaptive MeshRefinemen{AMR) wherethe processotoadvariesat

runtime. Ratherthenleaving the burdenon the programmerandincreasingthe cost
of parallelsoftware,BCStriesto balancehe processotoad over a setof paralleljobs

at runtime. Figure 3 providessomeintuition on how BCS cancompensatéransient
load imbalanceover multiple jobs. An extensive simulationanalysis[2] shows that,

if we put togethera few parallel jobs with a pronouncedand randomly distributed
load imbalance,BCS can achieve almostoptimal processotutilization. BCS in its

basicform cannothandlepermanentoadimbalancetheonegeneratedby applications
that have someprocessesonsistentlyunderloadedigerloaced. This problemcanbe

handledwith abuilt-in processnigrationmechanismdiscussedbelow.

Whenwe scaleanapplicationto alargenumberof nodeswe inevitably expandthe
communicatiortime. We cantoleratethe communicatioroverheadn the sameway
wetolerateloadimbalanceby overlappingcomputatiorandcommunicatiorof several
jobs. Figure3 shavs haw the communicatiorgeneratedy threejobs canbe globally
optimized.

BCS canthustransforma collectionof ill-behaveduserprogramsn asingle,well
behaed, systemprogram. BCS can perform theseoptimizationswithout changing
the individual applications. This is an extremelyimportantaspectbecausgrogram
developmentandoptimizationcanbevery expensve.

3.4 Impr oved Resource Utilization

Many studiesin the literatureshowv thata gangscheduledsystemcanhave a response
time ordersof magnituddasterthana spaced-shareahe.n arecentwork, we shoved
that jobs spendmost of their time waiting, ratherthan running (75% vs 25%) [6].
Gangschedulingsubstantiallyreduceghefirst term,becausgobscanenterthe system
much earlier, by slightly increasingthe secondterm, becauseunningjobs sharethe
processors.

BCSfurtherimprovestheseresultsby overlappinghe useof theresourcebetween
multiple jobs. We estimatedusingthe utilization logs over a period of six monthsof

COMPUTATION

3 3 3 3 3 3 3 3
| el — o —
P, I E— i —
P,)])
P, T —
COMMUNICATION
N j—) | :
N j— — — T
p j—) | : =]
b, = I — E—] :)

TIME TIME

Figure3: Filling in computatiorandcommunicatiorholes

Nirvana,a 1 TeraOpunclassifiednachineat Los Alamos,thatwe canalmostdouble
resourceautilization.

3.5 EnhancedFault-Tolerance

BCS createsa framawork to implementa fault-toleranceanodelbasedon incremental
checkpointsandtheuseof sparenodesto replacethe faulty onesovertime.

BCS schedulesll communicationin orderto have a quiescensystem,possibly
with no messagem transit,at the endof eachtime-slice. In this way we canclearly
identify a valid stateto checkpointwhichis simply representetty the memoryimage
of eachproces9lusthe communicatiordescriptorsat the endof specifictime-slices.
In fact, it is enoughto mark as“dirty” thosepageshathave beenoverwrittenduring
eachgroupof time-slicesthatrepresent checkpointquantumandflushthemto safe
storage Thecheckpointraffic canbescheduledsabackgroundraffic andcanbesent
togethemith thehigh priority network traffic. An interestingoy-productof BCSis that
the sameinfrastructurehatimplementshe checkpointcanbe alsousedto implement
processnigration,andhenceaddressoadimbalance.

The strobingalgorithmis a key point to implementfault-detection.In fact, it is
possibleto combineto the startstrobephasea diagnosticphaseto checkthe statusof
thenodesandidentify thefaulty ones,f needed.

4 Preliminary Results

In the last yearwe obtaineda numberof scientificandtechnicalresultsthat build a

solid foundationfor the succes®of BCS. They addressseveral aspectsthat include
an in-depthperformancesvaluationof animportantASCI application,an innovative

way to implementthe strobingalgorithmsin few tensof microsecond# thousandf

nodesastudyof thedynamicof incrementatheckpointandaninitial implementation
of BCS.

4.1 PerformanceEvaluation of Sage

In [4] we have provided anin-depthevaluationof an ASCI code,called Sage which
is consideredepresentatie of 70% of the computingcycleson ASCI machines.The
analysisshowv that, whenrun in a large numberof processorstheseapplicationsuse

only a fraction of the computingtime (about50%) and display a pronouncedoulk-
synchronou$ehaior, which cyclically alternategphase®f computatiorandcommu-
nication.

4.2 Hardware Support for Multicast Communication

We recentlyprovedthat by usingthe hardware multicastof the Quadricsnetwork [8]
[7], it is possibleto implementthe strobingalgorithmin aslittle asfew tensof mi-
crosecondsn machineconfigurationaith thousandsf nodes.Thesheerspeedf the
mechanisrmandits scalability(the runtime is almostconstantjrrespectve thenumber
of nodes)xhaw thatBCScanbeefficiently implementedn largescalecomputersThe
Quadricsnetwork is currentlyusedby someof thelargestsupercomputeris theworld,
astheLos AlamosASCI 30T, TerascaléComputerat Pittshurgh Supercomputingen-
ter, CEA (France)LLNL etc.

4.3 Dynamic of the Incremental Checkpoint

A work in progressshaws that, in mostscientificapplicationghe size of the working
setthatmustbe incrementallycheckpointeds relatively small,andalmostinsensitve
to the memoryfootprint of the application but only sensitve to the sizeof checkpoint
interval. A preliminarystudy of Sage,shaws thaton the ASCI 30T, the checkpoint-
inducedtraffic would only require10% of backgroundandwidth.

4.4 STORM: A ScalableTOol for Resouice Management

We areimplementinganinitial prototypeof BCS, called STORM [3] on Alphasener
andIntel-based.inux clusters. The experimentalresultsshov that STORM canper
form the strobingalgorithmin few tensof microsecondsysingthe hardware support
for multicastprovided by the Quadricsnetwork. It canalsodistribute andlauncha
12MB executableon a 256-processor/64-nod&lphasener clusterin lessthan 150
milliseconds.Thegangschedulecanperformaglobalcontext switchasfastasalocal
schedulingdecisionin few hundredsof microsecondsby using an optimizedalgo-
rithm runningon the network interfaceprocessarTo the bestof ourknowledge thisis
atleasttwo ordersof magnituddasterthanary existing productionresourcenanagers
in launchingjobs, performingresourcananagemertasksandgangscheduling.

5 Conclusion

In this paperwe have provided an overview of whatwe think arethe major problems
to build usable,large scaleparallel computers. Buffered Coschedulingpointsto a
completelynew directionandprovidesanoriginalapproachihatcanleadto thesolution
of someof thoseproblems. We hopethat our work on Buffered Coschedulingwill
prodinsightful discussion®nthe problemsof parallelprogramdevelopmentyesource
utilization andfault-tolerancet the“Scalingto New Heights”workshop.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Fabrizio Petrini and Wu-chunFeng. Buffered Coscheduling:A New Methodologyfor Multitasking
Parallel Jobson Distributed Systems. In Proceedings of the International Parallel and Distributed
Processing Symposium 2000, IPDPS2000, volume 16, CancunMX, May 2000.

FabrizioPetriniandWu-chunFeng.Schedulingvith Globallnformationin DistributedSystemsin Pro-
ceedings of the The 20th International Conference on Distributed Computing Systems, Taipei, Taiwan,
Republicof China,April 2000.

Eitan Frachtenbey, Fabrizio Petrini, JuanFernandezScottPakin, and Mike Lang. ManagingLarge-
ScaleAlphaserer Clustersn theBlink of anEye.In CAST (Compag User Group) 2002, SanFrancisco,
CA, April 2002.

DarrenKerbysonHankAlme, Adolfy Hoisie, FabrizioPetrini,Harvey WassermarmandMik e Gittings.
Predictve Performanceand Scalability Modeling of a Large-ScaleApplication. In Supercomputing
2001, Denver, CO, November2001.

Charle<E. Leisersoretal. The Network Architectureof the ConnectiorMachineCM-5. In Proceedings
of the 4th Annual ACM Symposiumon Parallel Algorithmsand Architectures, page®72-285,Junel992.

Fabrizio Petrini and Wu chun Feng. ResourceUtilization and Parallel ProgramDevelopmentwith
BufferedCoschedulingTechnicalreport,LOs AlamosNationalLaboratory 2000. LaboratoryDirected
ResearclandDevelopment ExploratoryResearch.

Fabrizio Petrini, Wu chunFeng,Adolfy Hoisie, Sahador Coll, andEitan Frachtenbey. The Quadrics
Network: High Performanc€lusteringTechnology | EEE Micro, 22(1):46-57,January-Februarg002.

Fabriziopetrini, SahadorColl, EitanFrachtenbey, andAdolfy Hoisie. Hardware-BasedndSoftware-
BasedCollectve Communicatioron the QuadricsNetwork. In Proceedings of the |EEE International
Symposium on Network Computing and Applications, CambridgeMA, October2001.

